Part-I

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Name of Subject</th>
<th>Teaching Scheme (Hours/Week)</th>
<th>Examination Scheme (Marks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Industrial drives and control</td>
<td>4</td>
<td>80 20 - - 100</td>
</tr>
<tr>
<td>2</td>
<td>Micro controller and Application</td>
<td>4</td>
<td>80 20 - - 100</td>
</tr>
<tr>
<td>3</td>
<td>Restructuring and Deregulation</td>
<td>4</td>
<td>80 20 - - 100</td>
</tr>
<tr>
<td>4</td>
<td>Power quality</td>
<td>4</td>
<td>80 20 - - 100</td>
</tr>
<tr>
<td>5</td>
<td>Elective-I</td>
<td>4</td>
<td>80 20 - - 100</td>
</tr>
<tr>
<td>6</td>
<td>Industrial drives and control lab</td>
<td>2</td>
<td>- - 25 50 75</td>
</tr>
<tr>
<td>7</td>
<td>Micro controller and Application lab</td>
<td>2</td>
<td>- - 25 25 50</td>
</tr>
<tr>
<td>8</td>
<td>Power Quality lab</td>
<td>2</td>
<td>- - 25 - 25</td>
</tr>
<tr>
<td>9</td>
<td>Elective-I lab</td>
<td>2</td>
<td>- - 25 - 25</td>
</tr>
<tr>
<td>10</td>
<td>Industrial training</td>
<td>-</td>
<td>- - 25 - 25</td>
</tr>
<tr>
<td>11</td>
<td>Project Seminar-I</td>
<td>4</td>
<td>- - 50 - 50</td>
</tr>
<tr>
<td></td>
<td>Total Part-I</td>
<td>32</td>
<td>400 100 175 75 750</td>
</tr>
</tbody>
</table>

Part-II

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Name of Subject</th>
<th>Teaching Scheme (Hours/Week)</th>
<th>Examination Scheme (Marks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Switchgear Protection</td>
<td>4</td>
<td>80 20 - - 100</td>
</tr>
<tr>
<td>13</td>
<td>FACTS</td>
<td>4</td>
<td>80 20 - - 100</td>
</tr>
<tr>
<td>14</td>
<td>Digital Signal Processing</td>
<td>4</td>
<td>80 20 - - 100</td>
</tr>
<tr>
<td>15</td>
<td>Elective-II</td>
<td>4</td>
<td>80 20 - - 100</td>
</tr>
<tr>
<td>16</td>
<td>Switchgear Protection Lab</td>
<td>2</td>
<td>- - 25 50 75</td>
</tr>
<tr>
<td>17</td>
<td>FACTS lab</td>
<td>2</td>
<td>- - 25 50 75</td>
</tr>
<tr>
<td>18</td>
<td>Digital Signal Processing lab</td>
<td>2</td>
<td>- - 25 - 25</td>
</tr>
<tr>
<td>19</td>
<td>Elective-II lab</td>
<td>2</td>
<td>- - 25 - 25</td>
</tr>
<tr>
<td>20</td>
<td>Project Seminar-II</td>
<td>8</td>
<td>- - 50 100 150</td>
</tr>
<tr>
<td></td>
<td>Total Part-II</td>
<td>32</td>
<td>320 80 150 200 750</td>
</tr>
</tbody>
</table>

NOTE: Minimum two tests should be conducted for each theory subject and average of best two tests should be considered.

Elective Part-I

a) High Voltage Engineering
b) EHVC Transmission
c) Mechatronics
d) Design & Estimation of Electrical System

Elective Part-II

a) HVDC Transmission
b) Power system Dynamics & Stability
c) Computer Aided Power system Design
d) Neural Network & Fuzzy Logic
e) Embedded & Real time systems
01. INDUSTRIAL DRIVES AND CONTROL

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: Introduction and dynamics of Electrical drives [8 hrs]

Unit 2: Characteristics of Motors [4 hrs]
Basic relations, Basic characteristics, Modified speed torque characteristics of D.C. shunt and series motor, steady state characteristics of 3 phase induction motor, and synchronous motor

Unit 3: D.C. Motor Drives [8 hrs]

Unit 4: Induction Motor Drives [10 hrs]

Unit 5: Synchronous motor and Brushless D.C. Motor Drives [6 hrs]
VSI fed synchronous motor Drives, Variable frequency control of single and multiple Synchronous, motor Drives Brushless D. C. motor Drives

Unit 6: Special Drives [4 hrs]
Stepper motor drives, switched reluctance motor drives, Torque equation, converter circuit for motor, operation of solar and battery operated drives.

REFERENCE BOOKS:-
3. Electrical Drives-concept and application By Vedam SuryaVanshi
4. Advanced Power Electronics & A.C. Drives By B.K. Bose
5. Analysis of Thyristor Power Controlled Motors By S.K. Pillar
02. MICRO CONTROLLER AND APPLICATION

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: 8051 Architecture [08 hrs]
8051 internal resources, pin diagram, I/O pins, ports and their internal logic circuits, counters, serial port, interrupt structure, SFRs and their addresses, watch dog timer, internal code memory, data memory, stack pointer, flags, bit addressable memory. Comparative study of 8051 families by diff manufacturers (ATMEL, DALLAS, PHILIPS, INFINION, SST).

Unit 2: Assembly Language Programming [05 hrs]
Study of Instruction set of 8051- data move, logical, arithmetic, jump and call instructions, Interrupt handling, timer programming, serial port communication, use of assembler and C-8051 cross compiler, simulator.

Unit 3: Microcontroller based system design [10 hrs]
External memory and space decoding, reset and clock circuits, expanding I/O, memory mapped I/O, memory addresses decoding, system testing and troubleshooting.

Unit 4: Real World Interfacing I [06 hrs]
Interfacing various parallel devices to 8051 like 8255 PPI, Timer counter 8253, character LCD, 12 bit ADC such as AD574, DAC interfacing such as DAC0808, Single Key and matrix keyboards (4X4), seven segment LED modules

Unit 5: Real World Interfacing II [10 hrs]
Interfacing of various serial peripherals- 8051 data communication in 8 bit UART mode, multiprocessor mode, study of SPI, I2C communication protocols.

Unit 6: Microcontroller Applications (Block Schematic and flowchart) [04 hrs]
Microcontroller based automatic power factor control relay, solid state energy meter using ASIC, weighing balance, serial E2PROM interfacing, temperature indicator and controller, real time clock using DS1307.

TEXT BOOKS:
2. The 8051 Microcontroller and embedded systems, Muhammad Ali Mazidi, Pearson
03. RESTRUCTURING AND Deregulation

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: Power Sector in India
Evolution of integrated, monopoly, state electricity boards (SEBs). Introduction to various institutions in Indian Power Sector such as CEA, Planning commission, PFC, Ministry of Power, State and Central Governments, REC, financial institutions, Utilities & their roles. Challenges before Indian Power Sector. Electricity Act 2003 and various national policies and guidelines under the Act.

Unit 2: Power Sector Economics
Introduction to various concepts such as capital cost, Debt and Equity, depreciation, fixed and variable costs, working capital, profitability indices, Net Present Value, life cycle cost etc. Typical cost components of utilities such as Return in Equity, Depreciation, Interest and Finance Charges, O & M Expenses etc and their determinants. Introduction to Average, Marginal and Avoided costs. Tariff Setting principles and choice of the rate structure. Concepts of Subsidy and cross-subsidy.

Unit 3: Power Sector Regulation
Role of regulation and evolution of regulatory commissions in India, Types and methods of regulation (Rate of Return Regulation, Performance Based Regulation, Incentive Regulation, Benchmarking or Yardstick regulation) The regulatory process in India (Composition of RCs, Selection, Authority, Regulatory decision making process) Non Price issues in Regulation such as Externalities (environment etc.), service quality, consumer service, social equity Transparency and public participation in regulatory process.

Unit 4: Introduction to Power Sector Restructuring and Market Reform
Introduction, Models based on energy trading or structural models— Monopoly, Single buyer, wholesale competition, Retail competition etc. Ring Fencing or Accounting separations, Models based on contractual arrangements — Pool model, bilateral dispatch, Pool and bilateral trades, Multilateral trades. Ownership models (Public Sector — State owned and municipal utilities, Co-operatives, Private Sector, Public-Private Partnership) Rationale behind reforms, competition for the market vs. competition in the market, International experience with electricity reform — Latin America, The Nordic Pool, UK, USA, China and India (Orissa, AP and Maharashtra). The California Energy Crisis.

Unit 5: Competitive Electricity Markets
Trading – electricity marketplaces, rules that govern the electricity markets, peculiarity of electricity as a commodity, various models of trading arrangements – integrated trading model, wheeling trading model, decentralized trading model. Retail Competition— retail access framework, competing retailers, metering and accounting issues, technological aspects of competition. Impact of market reform on Regulation and externalities (environment, social equity etc.)

Unit 6: Transmission Planning and Pricing
Transmission planning in the era of market structure, transmission rights and pricing, different methods of transmission pricing, different transmission services (ancillary services etc.) congestion issues and management, grid codes, transmission ownership and control - Transco and ISO, transmission pricing and model in India – availability based tariff (ABT), role of load dispatch centers (LDCs), open access.

Text Books:
2. “Know Your Power”, A citizens Primer On the Electricity Sector, Prayas Energy Group, Pune
REFERENCE BOOKS:
1. Bhanu Bhushan, “ABC of ABT - A primer on Availability Tariff”
2. Central Electricity Regulatory Commission, Regulations and Orders - www.cercind.org
3. Electric Utility Planning and Regulation, Edward Kahn, American Council for Energy Efficient Economy
4. Electricity Act 2003 and National Policies – www.powermin.nic.in
7. Privatization or Democratization The Key to the Crises in the Electricity Sector - The Case of Maharashtra 2002, www.prayaspune.org
8. Regulation in infrastructure Services: Progress and the way forward - TERI, 2001
10. Various publications, reports and presentations by Prayas, Energy Group, Pune www.prayaspune.org
04. POWER QUALITY

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: Introduction
Importance of power quality, terms and definitions of power quality as per IEEE Std. 1159, such as transients, short and long duration voltage variations, interruptions, short and long voltage fluctuations. Symptoms of poor power quality. Definitions and terminology of grounding. Purpose of grounding. Good grounding practices and problems due to poor grounding.

Unit 2: Voltage Variation
RMS voltage variations in power system and voltage regulation, per unit system, complex power. Subdivision of voltage variations in power system. Long duration and short duration voltage variations, over voltage, under voltage, voltage sags, swells, imbalance, transient and flicker. Principle of regulating the voltage. Various devices used for voltage regulation and impact of reactive power management. Various causes of voltage flicker and their effects. Short term (Pst) and long term (Plt) flicker. Various means to reduce flicker.

Unit 3: Voltage Sag and Interruptions
Definitions of voltage sag and interruptions. Voltage sags vs interruptions. Economic impact of voltage sag. Major causes and consequences of voltage sags. Voltage sag characteristics i.e. magnitude, duration, phase angle jump, point on wave initiation and point on wave recovery, missing voltage. Voltage sag assessment. Influence of fault location and fault level on voltage sag. Assessment of equipment sensitivity to voltage sags. Voltage sag requirements for computer equipment, CBEMA, ITIC, SEMI F 47 curves. Representation of the results of voltage sag analysis. Voltage sag indices. Mitigation measures for voltage sags, such as UPS, DVR, SMES, CVT etc. utility solutions and end user solutions.

Unit 4: Waveform Distortion

Unit 5: Transient Over Voltages

Unit 6: Power Quality Monitoring
Need of power quality monitoring and approaches followed in power quality monitoring (Reactive and proactive approach). Power quality monitoring objectives and requirements. Initial site survey. Selection of monitoring equipments and use of various equipments required for power quality monitoring. Study of connection of power quality monitor, selection of monitoring location and period. Requirement of power
quality monitor to monitor various power quality parameters. System wide and discrete power quality monitoring. Setting thresholds on monitors, various techniques of data collection and analysis.

TEXT BOOKS:

REFERENCE BOOKS:
2. Ewald F. Fuchs, Mohammad A. S. Masoum, “Power Quality in Power Systems and Electrical Machines”
05. ELECTIVE-I (a) HIGH VOLTAGE ENGINEERING

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: Electrostatic fields
Electrostatic stresses, Gas/vacuum as insulators, liquid breakdown, solid breakdown, estimation and control of electric stresses, surge voltages, their distribution and control

Unit 2: Conduction and break-down in gases
Gases as insulating media, ionization processes, Townends growth equation, primary and secondary process, Townsends criterion for break-down, Pascens law, break-down in non-uniform fields and corona discharges, post break-down phenomena and applications, practical considerations in using gases for insulation purposes

Unit 3: Conduction and break-down in liquid and solid dielectric
Liquids as insulators, conduction and break-down in pure liquids, conduction and breakdown in commercial liquids.
Intrinsic break-down, electromechanical break-down, thermal break-down, break-downs of solid dielectrics in practice, break-down of composite insulation, solid dielectric used in practice

Unit 4: Generation and measurements of high voltages and currents
Generation of HVDC/HVAC and impulse voltages, generation of impulse currents, tripping and control of impulse generators.
Measurement of high direct current voltages, measurement of high ac and impulse voltages, measurement of high dc, ac and impulse currents, CRO for impulse voltage and current

Unit 5: High voltage testing of electrical apparatus
Testing of insulators and bushings, testing of circuit breakers, testing of cables, testing of transformers, testing of surge divertors, radio interference measurements

Unit 6: Design, planning and layout of high voltage laboratories
Test facilities provided in high voltage laboratories, activity and studies in high voltage laboratories, classification of high voltage laboratories, size and ratings of high voltage laboratories, grounding of impulse testing laboratories

REFERENCE BOOKS:
2. High voltage insulation engineering by Ravindra Arora, Wolf Gang Mosch, New age international publishers ltd Wiley estern Ltd
3. High Voltage Engineering by C L Wadhwa, New age international publishers ltd
4. Introduction to High Voltage Engineering Pearson 1970 Kuffel E and Abdullah M,
5. High Voltage Engineering Pergamon 1984 Kuffel E,
6. High Voltage Engineering fundamentals by E Kuffel, W S Zaengi, J Kuffel Newness publications
7. High Voltage Engineering by Prof. D V Razevig, Translated from Russian by Dr. M P Chourasia Khanna publishers, New Delhi
05. ELECTIVE-I (b) EHVAC TRANSMISSION

Teaching Scheme: Examination Scheme:
Lectures: 2 Hours /Week Paper: 40 Marks
Class Test: 10 Marks

Unit 1: Introduction and calculation of line and ground parameters [5 hrs]
Engineering aspects and growth of EHVAC, transmission line trends and preliminaries, power transferability, transient stability, transit stability limits, surge impedance loading, resistance, power loss, temperature rise properties of bundled conductors, inductance and capacitance, calculation of sequence and capacitance, line parameters for modes of propagation resistance and inductance of ground return.

Unit 2: Voltage gradient of conductors and I2R and corona loss [7 hrs]
Charge potential relations for multi-conductor lines, surge voltage gradients on the conductor lines, surge voltage gradients on sub-conductors of bundle conductors, distribution of voltage gradients on sub-conductors of bundle, I2R and corona loss, corona loss formula, charge voltage diagram with corona, attenuation of travelling waves due to corona loss, audible noise, corona pulses, their generation and properties, limits for radio interference fields.

Unit 3: Lighting and lighting protections [8 hrs]
Lighting strokes to lines, their mechanism, general principles of the lighting protections, problems, lower footing, resistance, lighting arrestors and protection characteristics, different arrestors and their characteristics, protection characteristic.

Unit 4: Over voltage in EHV system covered by switching operations [5 hrs]
Over voltage, their types, recovery voltage and circuit breaks, Ferro-resonance over voltage and calculation of switching surges, single phase equivalents.

Unit 5: Power frequency voltage control and over voltages [7 hrs]
Generalized constants, charging currents, power circle diagram and its use, voltage control shunt and series component, sub-synchronous resonance in series capacitors compensated lines and static reactive compensating systems.

Unit 6: Insulation co-ordination and Design of EHV-AC lines [8 hrs]
Insulation levels, voltage withstand levels of protected equipments and insulation condition based on the lighting.
Introduction, design factors under steady state, design examples, steady state limits, line insulation design based upon transient over voltages.

REFERENCE BOOKS:-
Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: Introduction

Unit 2: Electromechanical Drives
DC Servo motors, 4-quadrant servo drives, braking methods, bipolar drives, MOSFET Drivers, SCR Drives, variable frequency drives.

Unit 3: PLC and Programmable Motion Controllers
Ladder diagram, FSD structured programming, Interfacing of Sensors and Actuators to PLC. Interpolation: point-to-point, Linear Circular, B-S plane, Home, Record position.

Unit 4: Precision Mechanical Actuation

Unit 5: Design of Mechatronics Systems
The design process, traditional and Mechatronics designs. A few case studies like piece counting system pick and place manipulator, simple assembly involving a few parts, part loading. Unloading system, automatic tool and pallet changers etc.

Unit 6: Robot & its Peripherals
End Effecters – Types, Mechanical Electromagnetic, Pneumatic Grippers, Tool as End effector, Robot End effector interface.

REFERENCE BOOKS:
6. Robot Technology (Fundamentals)- James G. Keramas (DELMAR CENGAGE learning)
8. Robotics: Controls, Sensing, Vision and Intelligence – Fu, Gonzalez, Lee (McGraw Hill)
05. ELECTIVE-I (d) DESIGN & ESTIMATION OF ELECTRICAL SYSTEM

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 4 Hrs/Week</td>
<td>Theory Exam: 80 Marks</td>
</tr>
<tr>
<td></td>
<td>Class Test: 20 Marks</td>
</tr>
</tbody>
</table>

Unit 1: Introduction

[6 hrs]

Review of basic electrical engineering formula, Types of Electrical Projects, Different electrical systems in industrial/commercial/residential project, Activities of an Electrical Engineer as design/maintenance/project engineer, Overview of Applicable IS/international standards and codes products and installations.

Unit 2: Project Management

[6 hrs]

Justifying project investments- Financial feasibility, Project Planning- QAP, WBS, Scheduling Logistics, Project Implementation, Project Management application software-Capabilities, Limitations, selection

Unit 3: Estimation & Tendering

[8 hrs]

Project Engineering – different electrical drawings: Single Line Diagrams in detail, General equipment design/selection criteria, Estimation: importance, preparing rough and detailed estimates, Databases required for reasonably accurate estimates, underlying assumptions in estimates and sensitivity analysis, Tender documents and tendering procedure

Unit 4: Special Electrical Installations

[7 hrs]

Computer Installations, Communications- EPABX, Internet, video conferencing, Fire Protection & Extinguishing, Security Systems, Elevators, CC/MA TV,PA/Audio

Unit 5: Lighting System and Illumination

[7 hrs]

Different types of light sources and their application, Average lumen method of interior lighting system, Design consideration and recommendation for domestic, commercial and industrial applications (concept only).

Unit 6: Emergency Power Supply

[6 hrs]

Types of power emergencies-power breakdown, fire, DG Sets- Sizing, Selection Criteria, Batteries-types, sizing, selection criteria, UPS, Future Trends.

REFERENCE BOOKS:

06. INDUSTRIAL DRIVES AND CONTROL LAB

Teaching Scheme
Practicals: 2 Hrs/week

Examination Scheme
TermWork: 25 Marks
Practical: 25 Marks

Term-work shall consist of 8 experiments from list mentioned below.

LIST OF EXPERIMENTS:-

1. 1- phase half controlled bridge D.C. Drive.
2. 3 - phase half controlled bridge D.C. motor Drive.
3. 3 - phase full controlled bridge D.C. drive.
6. Inverter fed 3 - phase induction motor variable frequency drive.
7. 3 - phase Cyclo – converter fed variable frequency induction motor drive.
8. Solid state scherbius Drive with slip power recovery scheme.
10. CSI fed 3 - phase induction motor drive system.
07. MICRO CONTROLLER AND APPLICATION LAB

Teaching Scheme
Practicals: 2 Hrs/week

Examination Scheme
TermWork: 25 Marks
Practical: 25 Marks

Term-work shall consist of 10 experiments from list mentioned below.

LIST OF EXPERIMENTS:-

1to 5. Programming of 8051 based on Instruction set.

6. Study of Interrupts of 8051 (Using Proteus)

7. Study of Interrupts of 8051 (Using hardware)

8. Study of Timer of 8051 (Using Proteus)

9. Study of Timer of 8051 (Using hardware)

10. Study of I/O operations (Using Proteus) of 8051

11. Study of I/O operations (Using a hardware) of 8051

12. Study of ADC Interfacing and Programming with 8051

13. Study of DAC Interfacing and Programming with 8051

14. Interfacing with LED display (single / 7 segment) / relay etc.

15&16. Applications of 8051
08. POWER QUALITY LAB.

Teaching Scheme
Practicals: 2 Hrs/week

Examination Scheme
TermWork: 25 Marks

TERM WORK:

Term work consists of 6 assignments (one from each Unit) & at list two experiments from the following

LIST OF EXPERIMENTS:

1. Generation of different types of PQ disturbances.
2. Simulation of mitigation device for voltage sag.
3. Simulation of harmonic producing load and filter.
4. Study of harmonics in UPS.
5. Site survey for PQ analysis using PQ monitoring instruments.

This simulation is to be carried out using software like PSCAD, ETAP, Simulink, PowerWorld and SimPower etc.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Scheme</td>
<td>Examination Scheme</td>
</tr>
<tr>
<td>Practicals: 2 Hrs/week</td>
<td>TermWork: 25 Marks</td>
</tr>
<tr>
<td>Term-work</td>
<td></td>
</tr>
</tbody>
</table>

Term-work shall consist of six assignments covering the topics mentioned in the above syllabus.
09. ELECTIVE-I (b) EHVAC TRANSMISSION LAB

Teaching Scheme
Practicals: 2 Hrs/week

Term-work

Term-work shall consist of six tutorials covering the topics mentioned in the above syllabus
09. ELECTIVE-I (e) MECHATRONICS LAB

Teaching Scheme
Practicals: 2 Hrs/week

Examination Scheme
TermWork: 25 Marks

Term-work

1. Interfacing and control of DC Servo motor with Microcontroller for position, speed and direction control.

2. PLC Programming in ladder, FBD, Structured.

4. Pneumatic and Hydraulic actuators.

5. Robot programming.

6. CNC Programming.
09. ELECTIVE-I (d) DESIGN & ESTIMATION OF ELECTRICAL SYSTEM LAB

Teaching Scheme
Practicals: 2 Hrs/week
Term-work

Examination Scheme
TermWork: 25 Marks

The term work will consist of at least 6 assignments
10. INDUSTRIAL TRAINING

Examination Scheme

TermWork: 25 Marks

TERM-WORK

It consists of report on the industrial training and seminar giving details of the training.
11. PROJECT SEMINAR-I

Teaching Scheme
Practicals: 4 Hrs/week

Examination Scheme
TermWork: 50 Marks

1) Project group should consist of students not more than 4 students

2) All the students in the group should deliver seminars and at least one student from the group should deliver seminar based on project.

3) The group should submit a synopsis of the project to the department and a report based on seminars.

4) A group should complete the design of project in this semester.

5) The term work marks should be based on performance in seminar delivered and preparation of project work completed.
12. SWITCHGEAR AND PROTECTION

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: Switch-Gear
Different types, study of L.T. fuse gear, Fuses & H.R.C. fuses, their characteristics and applications, A.C. medium and low voltage, Indoor & Outdoor switch-gear.

Unit 2: Circuit – Breakers

Unit 3: Protection Philosophy
Types of relays, principle of operation, working characteristics of balanced beam, induction type, thermal, distance or impedance (different type), Buccholz relay, negative phase sequence, harmonic restraint relays. Induction relays, setting, principles of over current, graded time-lag, directional, biased differential, reverse power, earth fault distance carrier current protection.

Unit 4: Static Relays
Advantages and limitations, solid state devices employed in static relaying comparator, Time delay circuits, level detectors, characteristics and applications.

Unit 5: Apparatus Protection
Transmission System Protection:-Using distance relays Introduction to distance relaying, zones of protection, setting and coordination of distance relays, pilot protection with distance relays, and realization of distance relays using numerical relaying algorithms.
Transformer protection:- Percentage differential protection, magnetic inrush current phenomenon, percentage differential relay with harmonic restraint, restricted earth fault protection, incipient faults, Buccholz relay, protection against over fluxing.
Protection of Transformer and Generator: - Stator phase and ground fault protection, protection against unbalanced loading, loss of excitation, loss of prime mover and over speeding.

Unit 6: Basics of Numerical relaying
Numerical relaying fundamentals, sampling, sampling theorem, anti-aliasing filter, least square method for estimation of phasors, Fourier algorithms, Fourier analysis and discrete Fourier transform, estimation of phasors from discrete Fourier transform, Phasor Measurement Unit (PMU)
REFERENCE BOOKS:-
1. A Web Course (NPTEL) on ‘Digital protection of power system’, Prof. Dr. S.A.Soman, IIT Bombay.
5. The art and Science of Protective Relaying – Mason.
13. FLEXIBLE AC TRANSMISSION SYSTEM

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: FACTS Concept and general System Considerations [4 hrs]

Unit 2: FACTS controllers [8 hrs]
Introduction, Basic types, relative importance of different types of controllers, Shunt connected controllers, Series connected controllers, combined series and parallel controllers, other controllers.

Unit 3: Static Shunt Compactors: SVC and STATCOM [4 hrs]
Introduction, Objectives of shunt compensation, Methods of controllable Var generation, Static Var compensators SVC and STATCOM Comparison between SVC and STATCOM Static Var systems.

Unit 4: Static series Compensators: GCSC, TSSC, TCSC and SSSC [8 hrs]
Introduction, Objectives of series compensation, Variable impedance type Series compensators, switching converter type series compensators.

Unit 5: Static voltage and phase angle Regulators: TCVR and TCPAR [8 hrs]
Introduction, Objectives of voltage and phase angle Regulation, approaches to thyristor Controlled Voltage and phase angle Regulators. Switching converter based voltage and phase angle regulators, hybrid phase angle regulators.

Unit 6: Applications of FACTS [8 hrs]
Concepts of UPFC, IPFC, NGH-SSR damping scheme and thyristor controlled Braking Resistor and application of FACTS.

REFERENCE BOOKS:-
2. FACTS controllers in power transmission and distribution—K R Padiyar

14. DIGITAL SIGNAL PROCESSING

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: Sampling of Time Signals [8 hrs]
Sampling theorem, application, frequency domain representation of sampling, and reconstruction of band limited signal from its samples. Discrete time processing of continuous time signals, changing the sampling rate using discrete time processing.

Unit 2: Z-Transform [6 hrs]

Unit 3: Discrete Fourier Transform and Fast Fourier Transform [7 hrs]
Derivation of DFT from DTFT, Inverse DFT, Convolution using DFT. Computational complexity of the DFT, Decimation-in-time FFT Algorithm, Decimation-in-frequency FFT Algorithm, Comparison of DIT and DIF algorithms.

Unit 4: Realization [5 hrs]
Realization of FIR and IIR filters using direct form, cascade form, frequency sampling, parallel form, lattice and ladder structure.

Unit 5: Basics of Digital Filters [7 hrs]
Fundamentals of digital filtering, various types of digital filters, design techniques of digital filters: window technique for FIR, bi-linear transformation and backward difference methods for IIR filter design, analysis of finite word length effects in DSP, DSP algorithm implementation consideration.

Unit 6: Application of DSP [7 hrs]
Spectrum Analysis, power factor correction, Harmonic analysis and measurement, applications to machine control, DSP based vibration analysis system.

REFERENCE BOOKS:
3. Simon Haykin- Signals and System
15. ELECTIVE-II (a) HVDC TRANSMISSION

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: HVDC system Components and Configuration [6 hrs]

Unit 2: Converter Theory and Performance Equation [7 hrs]
Valve Characteristics, Converter Circuit, Converter Transformer Rating, multiple Bridge Converter, and Detailed Analysis of converters.

Unit 3: Control of HVDC Systems [7 hrs]
Basic principle of control, control implementation, Converter firing control system, Valve blocking and bypassing, Starting and stopping, power flow reversal, Controls for enhancements of AC system performance, Higher Level Controllers, Telecommunication requirements.

Unit 4: Converter Faults and protection [5 hrs]
Converter Faults, Protection Against Overcurrents, Over Voltage in converter Stations, Protection Against over voltages.

Unit 5: Harmonics, Filters and Reactive Power Control [10 hrs]
AC side and DC side Harmonics, Design of Filters. Introduction, Reactive power requirements in Steady state, sources of reactive Power, Static VAR system, Reactive Power control during Transients.

Unit 6: Multi-terminal DC System [5 hrs]

REFERENCE BOOKS:
2. Kimbark E. W. “HVDC Transmision, 1st ED. Wiley Eastern Ltd
15. ELECTIVE-II (b) POWER SYSTEM DYNAMICS AND STABILITY

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: Introduction [6 hrs]

Unit 2: Modeling of Synchronous Machine [7 hrs]

Unit 3: Dynamics of Synchronous Generator Connected to Infinite Bus [7 hrs]
System Model, Synchronous Machine Model, System Simulation, Consideration of other Machine Models including SVC Model.

Unit 4: Small signal Stability [7 hrs]
Single and multi-machine system, Damping and Synchronizing torque Analysis, Power System Stabilizers.

Unit 5: Transient Stability [7 hrs]
Evaluation and Simulation, application of energy functions for direct stability evaluation, TS controllers.

Unit 6: Voltage Stability [6 hrs]
Introduction, affecting factors, analysis, comparison with angle stability

REFERENCE BOOKS:-
3. Benjamin C. Kuo, Automatic Control system, Prentice Hall of India Pvt Ltd.
15. ELECTIVE-II (c) COMPUTER AIDED POWER SYSTEM DESIGN

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: Introduction
[6 hrs]
Digital computers in power system simulations, System view point, Hierarchy of transmission and distribution system, nature and scope of power system studies. Power system components, representation of transmission lines. Transformers - Two winding and auto-transformers, tap changing transformer and loads using ETAP Software. Generation of Impedance and admittance matrices of the system on digital computers using MATLAB Software.

Unit 2: Load flow studies
[7 hrs]

Unit 3: Fault Studies
[7 hrs]

Unit 4: Integrated Information Systems
[7 hrs]

Unit 5: Supervision Control and Data Acquisition systems (SCADA)
[7 hrs]
Introduction to SCADA, SCADA Systems-Data collection Equipment, Data Transmission Telemetric Equipment, Data monitoring Equipment, Remote Terminal Units, Communication between Control centre and SCADA system.

Unit 6: Power Systems and SCADA
[6 hrs]
Central Operation and Control of Power Systems using SCADA, Functions of SCADA systems, Integration of Management control and protection functions by SCADA systems, SCADA configurations, Application of SCADA for power system operation and control.

REFERENCE BOOKS:-

15. ELECTIVE-II (d) NEURAL NETWORK & FUZZY LOGIC

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: Basics of Artificial Neural Network (ANN) [5 hrs]
Introductions, ANN, model of neural network, topologies, perceptions, basic learning rules-Supervised learning and unsupervised learning

Unit 2: Feed Forward and Feedback Networks [10 hrs]
Multi layer Networks, delta rule, back propagation training, Hop field network, gradient hop field network, (discrete & continuous) transient response, Boltzman machine.

Unit 3: Application of ANN [5 hrs]
Applications to various field such as image & signal Processing, Control Systems etc.

Unit 4: Fuzzy System [10 hrs]
Fuzzy sets & membership, classical sets & fuzzy sets. Fuzzy relations, Fuzzification, & defuzzification, fuzzy logic & fuzzy system, fuzzy automata development of membership function.

Unit 5: Fuzzy Arithmetic [5 hrs]
Extension principle, fuzzy arithmetic, approximate methods of extension.

Unit 6: Fuzzy Control System [5 hrs]
Simple fuzzy controls, fuzzy in process control, fuzzy statistical process control.

REFERENCE BOOKS:-
2. Fuzzy Logic with Engineering Application by Timothy J Ross, Wiley Student Edition
3. Neural Network-A Classroom Approach by Satish Kumar, Tata Mcgraw Hill
4. Fuzzy Logic Intelligence, Control and Information by Jhon Yen, Reza Langari, Pearson
5. Introduction to Artificial Neural Networks – Jacek M. Zurada – Jaico publication
6. Fundamentals of Artificial Neural Networks – By mohamad H. Hassoun, PHI
7. Fuzzy logic with engineering application- Timothy J.Ross Willy publication second addition.
8. Fuzzy sets & fuzzy logic _ Theory & application – Jorge Klir / Bo Yaun- PHI
15. ELECTIVE-II (e) EMBEDDED & REAL TIME SYSTEMS

Teaching Scheme
Lectures: 4 Hrs/Week

Examination Scheme
Theory Exam: 80 Marks
Class Test: 20 Marks

Unit 1: **RISC processor for embedded system** [7 hrs]
Introduction to ARM Controller, architecture, memory organization, pipeline & cache concepts, ARM (32 bit) & THUMB (16bit) operating modes, Introduction to instruction set & assembly language programming’, ARM instruction set & THUMB instruction set, switching between ARM & THUMB instructions.

Unit 2: **Designing of embedded hardware & interfacing** [8 hrs]
Design- IrDA - Introduction to IrDA.
USB - Introduction to USB, USB packets, physical interface, implementing a USB interface.
Serial Ports - UART, Error detection, old Faithful- RS 232C, RS- 422, RS- 485
I2C - Overview of I2C, adding a real time clock with I2C, adding a small display with I2C

Interfacing - DS12887 RTC interfacing & programming in C Alarm, SQW, & IRQ features of the DS12887 chip.

Unit 3: **Introduction to real time concepts** [5 hrs]
Basic computer architecture & terminology, real time design issues, examples of real time system.

Unit 4: **Real time specifications & design techniques** [8 hrs]
Natural languages, mathematical specifications, flowcharts, structure charts, pseudo code & programming design languages, finite state automata, data flow diagrams, Petri Nets, Warnier- Orr Notation, State charts, Sanity in using Graphical techniques.

Unit 5: **Hardware & Software integration** [6 hrs]
Goals of real time system integration, tools, methodology, the software Heisenberg Uncertainty principle.

Unit 6: **Real time application** [6 hrs]
Real time systems as complex systems, the first real time application, real time data bases, real time image processing, real time UNIX, Building real time applications.

REFERENCE BOOKS:-
1. A Embedded System Software by David E Simon, Pearson Education
2. Embedded System Design- A Unified Hardware/Software Introduction by Frank Vahid, Tony Givargis, Wiley Student Edition
3. Real time system design & analysis by Phillip A . Laplante, Wiley Student Editions
4. Embedded Systems-Architecture, Programming and Design by Raj Kamal, Tata Mcgraw Hill
5. Embedded C Programming and Microchip PIC by Barnett, O’cull, Cox, Cengage Learning
6. Embedded Microcontrollers by Todd D Morton, Pearson Education
8. ARM Processor Data book
9. ARM architecture reference manual edited by David Seal
16. SWITCHGEAR PROTECTION LAB

Teaching Scheme Examination Scheme
Practical: 2 hr/week TermWork: 25 Marks

Practical: 50 Marks

TERM WORK:

Term Work shall consist of a set of drawing as detailed below:

1. Sketch of one Circuit Breaker, Buchholz Relay and Induction Type of relay.
2. Different Types of protection provided to Stator and Rotor of Alternator.

A set of 6 to 8 experiments on operation of different types of relays, protection of Transformer, Alternator, Feeder and Transmission Lines.
17. FLEXIBLE AC TRANSMISSION SYSTEM LAB

Teaching Scheme
Practical: 2 hr/week

Examination Scheme
TermWork: 25 Marks
Practical: 50 Marks

TERM WORK:

The laboratory consists of Computer Simulation of various fact controllers. Approximately two numbers on each Unit from Unit No. 3 to Unit No. 6
18. DIGITAL SIGNAL PROCESSING LAB

Teaching Scheme
Practical: 2 hr/week

Examination Scheme
TermWork: 25 Marks

TERM WORK:
The term work shall consist of minimum SIX Experiments related with the syllabus as mentioned below

LIST OF EXPERIMENTS:-

1. To develop program for discrete correlation.

2. To understand sampling theorem.

3. Study of DSP starter kit and generation of Sine wave.

4. To design analog filter (low-pass, high pass, band-pass, band-stop)

5. Demo of FIR Filter implementation using DSP kit.

6. To understand stability test.

7. Find a) Circular convolution,

 b) Using DFT IDFT method find Circular convolution,

 c) Find linear convolution using Circular convolution.

8. Plot frequency response of given system function (Magnitude & Phase)
19. ELECTIVE-II (a) HVDC TRANSMISSION LAB

Teaching Scheme: Practical: 2 hr/week
Examination Scheme: Term Work: 25 Marks

TERM WORK:
Term work shall consist of at least six experiments / assignments carrying 15 Marks and a test covering the entire syllabus carrying 10 Marks.
19. ELECTIVE-II (b) POWER SYSTEM DYNAMICS & STABILITY LAB

Teaching Scheme: Practical: 2 hr/week
Examination Scheme: TermWork: 25 Marks

TERM WORK:
Four assignments based on simulation of four machine system, IEEE 14 bus system and other systems in software like MATLAB, ATP, PSCAD, etc. and their contingency and stability analysis.
19. ELECTIVE-II (c) COMPUTER AIDED POWER SYSTEM DESIGN LAB

Teaching Scheme Examination Scheme
Practical: 2 hr/week TermWork: 25 Marks

TERM WORK:
The term work shall consist the record of minimum eight experiments based on the simulation of course outline above using ETAP / PSCAD / MATLAB Software:

LIST OF EXPERIMENTS:

1. Representation of Single line diagram of power system.

2. Generation of impedance and admittance matrices.

3. Load flow studies.

4. Short circuit analysis.

5. Fault studies.

6. Transient stability analysis.

7. Contingency analysis.

8. SCADA case study.
19. ELECTIVE-II (d) NEURAL NETWORK & FUZZY LOGIC LAB

Teaching Scheme
Practical: 2 hr/week

Examination Scheme
TermWork: 25 Marks

TERM WORK:
The term work shall consist of Assignment based on coding for fault studies and stability studies in MATLAB or C++ using ANN and Fuzzy logic.
19. ELECTIVE-II (e) EMBEDDED & REAL TIME SYSTEMS LAB

Teaching Scheme Examination Scheme
Practical: 2 hr/week TermWork: 25 Marks

TERM WORK:
The term work is based on the minimum 8 tutorials, based on the syllabus.
20. PROJECT SEMINAR

Teaching Scheme
Practical: 8 hr/week

Examination Scheme
Term Work: 50 Marks
Practical Exam: 100 Marks

A project group should complete the project and working model of Hardware/Software (as applicable) should be submitted to the Department at the end of semester.
The project group should submit a report based on project work done by them including result analysis of the work done along with synopsis.